1

Fundamentals of Solid State Physics

Electronic Properties - The Free Electron Model

Xing Sheng 盛兴

Department of Electronic Engineering Tsinghua University <u>xingsheng@tsinghua.edu.cn</u>

This Class

- Introduction (Week 1)
- Materials and Crystal Structures (Week 2–3)
- Electronic Properties (Week 4–12)
 - Free electrons (the Drude and Sommerfeld models)
 - Electrons in a periodic potential (Bloch's Theorem)
 - The near-free electron model, the tight-binding model
 - Electronic band diagram, band gaps, effective mass
 - Metals, insulators, semiconductors
 - Devices: junctions, diodes, transistors
- Thermal Properties (Week 13)
- Optical Properties (Week 14)
- Magnetic Properties (Week 15)

Further Reading

- Ashcroft & Mermin, Chapter 1, 2, 3
- Singleton, Chapter 1

Electronic Properties of Materials

Metal

SiO

Silicon

6

Electronic Properties of Metals

Electronic Properties of Metals

n - density of electrons (#/m³)
 ν - velocity of electrons (m/s)
 μ - electron mobility (m²/V/s)

8

$$\sigma = \frac{j}{E} = ne\frac{v}{E} = ne\mu$$

$$\mu = \frac{v}{E}$$

How to get Ohm's Law?

assume free electrons in vacuum_

Xing Sheng, EE@Tsinghua

The Drude Model 德鲁德模型

Free electron 'gas'

 $\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \\ \bullet & \bullet \end{array}$

positive ions + electron cloud

- Independent
 - electrons do not interact with each other
- Free
 - **o** electrons do not interact with ions, except collision
- Collision (Origin of the resistance)
 - electrons are scattered by the ions instantaneously
- Relaxation time *τ* 弛豫时间
 - average time between two collisions
 - electron mean free path $I = v^* \tau$
- Maxwell–Boltzmann distribution
 - average kinetic energy

$$\frac{1}{2}mv^2 = \frac{3}{2}k_BT$$

P. Drude 1863–1906

The Drude Model 德鲁德模型

Free electron 'gas'

Resistance is caused by collisions of electrons with atoms

The Drude Model 德鲁德模型

Drude-Lorentz Model

$$F = m\frac{dv}{dt} + m\frac{v}{\tau} = eE(t)$$

 τ - relaxation time (s) 弛豫时间

when *E* is constant, *v* is constant

$$v = eE\frac{\tau}{m}$$

$$\mu = \frac{v}{E} = e\frac{\tau}{m}$$

$$\sigma = ne\mu = ne^2 \frac{\tau}{m}$$

$$j = nev = \sigma E$$

mobility

conductivity

Ohm's law

Successes of The Drude Model

Ohm's Law

$$j = \sigma E$$

• Electronic conductivity σ

v ~ 10⁵ m/s

τ~10⁻¹⁴ s

 σ ~ 10⁷ S/m

m = electron mass $9.11*10^{-31}$ kg *k* = $1.38*10^{-23}$ J/K *e* = $1.6*10^{-19}$ C *T* = 300 K, room temperature *I* = mean free path $0.1\sim1$ nm *n* = atomic density ~ 10^{29} #/m³

metals	conductivity (S/m)
	at 300 K
Ag	6.3*10 ⁷
Cu	6.0*10 ⁷
AI	3.5*10 ⁷

Successes of The Drude Model

Optical Reflectivity of Metals

mirror reflection

Failures of the Drude Model

It cannot explain

- Electronic heat capacity
- Thermal conductivity
- Hall effect / Hall coefficient
- Insulators / Semiconductors

Xing Sheng, EE@Tsinghua

The Drude Model 德鲁德模型

Free electron 'gas'

positive ions + electron cloud

- Independent
 - electrons do not interact with each other
- Free
 - **o** electrons do not interact with ions, except collision
- Collision (Origin of the resistance)
 - electrons are scattered by the ions instantaneously
- Relaxation time τ
 - average time between two collisions
 - π electron mean free path $I = v^* \tau$
- Maxwell–Boltzmann distribution
 - average kinetic energy

$$\frac{1}{2}mv^2 = \frac{3}{2}k_BT$$

P. Drude 1863–1906

The Sommerfeld Model 索末菲模型

Free electron 'Fermi' gas

Introduce quantum mechanics

A. Sommerfeld 1868–1951

Maxwell–Boltzmann distribution

Fermi–Dirac distribution

The Electron Wave Function

$$-\frac{\hbar^2}{2m}\nabla^2\psi(\mathbf{r}) + V(\mathbf{r})\cdot\psi(\mathbf{r}) = E\psi(\mathbf{r})$$
free electron
$$V(\mathbf{r}) = 0$$

$$\downarrow V(\mathbf{r}) = 0$$

$$k^2 = \frac{2mE}{\hbar^2}$$

$$\checkmark \psi(\mathbf{r}) = \sum_{\mathbf{k}} A_{\mathbf{k}} \exp(i\mathbf{k} \cdot \mathbf{r})$$

$$\int_{V} \psi * \cdot \psi d\mathbf{r} = 1$$

 \hbar^2

$$\psi(\mathbf{r}) = \frac{1}{\sqrt{V}} \exp(i\mathbf{k} \cdot \mathbf{r})$$

The Electron Wave Function

Classical vs. Quantum

Born-von Karman periodic boundary condition

$$\psi(x) = \psi(x + L_x)$$
 \longrightarrow $\exp(ik_x L_x) = 1$

Born-von Karman periodic boundary condition

$$\psi(x) = \psi(x + L_x) \longrightarrow \exp(ik_x L_x) = 1$$

$$k_x = \frac{2\pi n_x}{L_x} \qquad n_x = 0, \pm 1$$

1,±2,...

k is a quantized value

State vs. Electron

energy state / level / orbital 能态 / 能级 / 轨道

electron / phonon / ... 电子 / 声子 / ...

determined by space, lattice, environments, ...

$$N = 2 \cdot \frac{2k_F}{2\pi / L_x}$$

1D atomic chain

$$k_F$$
 - Fermi wavevector
 E_F - Fermi energy
 v_F - Fermi velocity
 T_F - Fermi temperature

 $T_{F} = \frac{E_{F}}{k_{B}}$ These values are determined by electron density N/L, not N or L

highest occupied state at T = 0 K

2D box

0.0

EN I

0.0

Ô.

0.0

 $\frac{2\pi}{L}$

 k_{x}

in a 2D box

Ö,

🕐 🗛 🔗

000

00000000

0.0

000

60

00000

00000000

0

$$N = 2 \cdot \frac{\pi k_F^2}{\frac{2\pi}{L_x} \cdot \frac{2\pi}{L_y}}$$
$$= 2 \cdot \pi k_F^2 \cdot \frac{A}{(2\pi)^2}$$

3D solid

3D solid

$$N = 2 \cdot \frac{4\pi}{3} k_F^3 \cdot \frac{V}{\left(2\pi\right)^3}$$

in a 3D solid

n = *N*/*V* - free electron density

- **k**_F Fermi wavevector
- *E_F* Fermi energy
- v_F Fermi velocity
- *T*_{*F*} Fermi temperature

 $k_F = (3\pi^2 n)^{1/3}$

 $v_F = \frac{\hbar k_F}{\hbar k_F}$

These values are determined by
density n, not N or V

highest occupied state at T = 0 K

Density of States (DOS) 态密度

Density of States (DOS) 态密度

$$g(E) = \frac{dn}{dE}$$

DOS - number of energy states/levels per unit energy in [*E*, *E*+*dE*], per unit volume

$$k=(3\pi^2 n)^{1/3}$$

$$E = \frac{\hbar^2 k^2}{2m_e}$$

$$n = \frac{1}{3\pi^2} \left(\frac{2m_e}{\hbar^2}\right)^{3/2} E^{3/2}$$

$$= \frac{dn}{dE} = \frac{1}{2\pi^2} \left(\frac{2m_e}{\hbar^2}\right)^{3/2} E^{1/2}$$

Density of States (DOS) 态密度

$$g(E) = \frac{dn}{dE} = \frac{1}{2\pi^2} \left(\frac{2m_e}{\hbar^2}\right)^{3/2} E^{1/2}$$

Q: How about in 1D and 2D?

Distribution of Free Electrons

Density of Electrons

(from 1 to 2)

State vs. Electron

energy state / level / orbital 能态 / 能级 / 轨道

electron / phonon / ... 电子 / 声子 / ...

determined by space, lattice, environments, ...

Electrons in an Electric Field *E*

momentum 动量
$$p = mv = \hbar k$$

$$\mathbf{F} = m\frac{d\mathbf{v}}{dt} = \hbar\frac{d\mathbf{k}}{dt} = -e\mathbf{E} \implies \delta\mathbf{k} = -\frac{e\mathbf{E}}{\hbar}t$$

Electrons in an Electric Field *E*

momentum 动量
$$p = mv = \hbar k$$

$$\mathbf{F} = m\frac{d\mathbf{v}}{dt} = \hbar\frac{d\mathbf{k}}{dt} = -e\mathbf{E} \implies \delta\mathbf{k} = -\frac{e\mathbf{E}}{\hbar}t$$

Electrons in an Electric Field *E*

momentum 动量
$$p = mv = \hbar k$$

$$\mathbf{F} = m\frac{d\mathbf{v}}{dt} = \hbar\frac{d\mathbf{k}}{dt} = -e\mathbf{E} \implies \delta\mathbf{k} = -\frac{e\mathbf{E}}{\hbar}t$$

collision time $t = \tau$, the displacement δk is steady

$$\delta \mathbf{k} = -\frac{e\mathbf{E}}{\hbar}\tau \longrightarrow \mathbf{v} = \frac{\hbar\delta \mathbf{k}}{m} = -\frac{e\mathbf{E}}{m}\tau$$

$$\Rightarrow \mathbf{j} = -ne\mathbf{v} = \frac{ne^2\tau}{m}\mathbf{E} = \sigma\mathbf{E} \quad \mathbf{Ohm's law}$$

Electron Conductivity - Revisit

- Electrons are in different energy states, therefore have different velocities and energies. Under *E* field, there are more electrons moving in the opposite direction.
- Mobility μ and relaxation time τ are average values for all the free electrons

Success of The Sommerfeld Model

- Ohm's Law
- Electronic conductivity σ
- Thermal conductivity of electrons
- Electronic heat capacity

Failures of The Sommerfeld Model

It cannot explain

- Electronic / Thermal properties of some other metals
- Hall effect / Hall coefficient
- Insulators / Semiconductors

The Free Electron Models

- The Drude Model: 1900s
- The Sommerfeld Model: 1920s
- What are missing?
 - Material and atom structures
 - Potentials of positive ions
 - Localized electrons

P. Drude 1863–1906

A. Sommerfeld 1868–1951

positive ions + electron cloud

Thank you for your attention